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Self-sustained trapping mechanism of zero-velocity parametric gap solitons
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Under specific excitation conditions, slowly traveling parametric solitons in quadratic media with singly
resonant Bragg gratings can evolve into zero-velocity localized solutions. We demonstrate numerically this
phenomenon, providing physical insight in terms of momentum densities.@S1063-651X~99!11902-0#

PACS number~s!: 42.65.Tg, 42.65.Ky, 42.65.Pc
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A nonlinear optical response associated with feedb
mechanisms supports optical bistability in a variety of ma
rial systems. In distributed feedback gratings, in particula
linear Bragg resonance can couple with an intens
dependent refractive index or a parametric nonlinearity
originate localized eigenstates@1–10#, i.e., slowly traveling
gap solitons in the resulting nonlinear photonic band g
structure~NPBS!. Such solutions can be viewed as optic
bits trapped within the grating for short- or long-term stora
depending on their propagation speed. Although the form
tion of stationary ~i.e., zero-velocity! localized states or
‘‘still’’ gap solitons in NPBS is intriguing in view of the
rapidly evolving interest in transparent optical networks a
all-optical memories, they have not been observed yet; t
excitation remains a challenging open problem.

In this report we show that two-color parametric gap so
tons~PGS! can be excited via second-harmonic~SH! genera-
tion in quadratic media with a single band gap induced
Bragg resonance with the input field at the fundamental
quency, i.e., singly resonant NPBS@8#. This addresses a sel
sustained nonlinear mechanism of localizing electromagn
energy at zero velocity in a NPBS, whose prototype is te
nologically available@11#.

We consider a bidirectional scalar field

E~Z,T!5 (
n51,2

exp@2 inv0T#$En
1~Z,T!

3exp@ ibnZ2 i ~n21!DkZ#

1En
2~Z,T!exp@2 ibnZ1 i ~n21!DkZ#%

propagating in the presence of a shallow corrugation of
riod L5p/b1(vB), where the optical fundamental fre
quencyv05vB1Dv is nearly resonant with the first-orde
Bragg frequencyvB ~i.e., uDv/vBu!1). We drop the Bragg
coupling for the optical SH, associated with the spatial SH
the grating corrugation. Besides the obvious case of a co
gation with only odd spatial harmonics~e.g., square wave
gratings!, this case is representative of a channel wavegu
supporting fundamental and SH modes of wave vectorsbn
5bn(nv0), with orthogonal polarizations so as to haveDk
5b222b1;0 through birefringence-induced phase matc
ing. In this case, it is well known that a grating which
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made efficient for one polarization~at fundamental! bears no
effect on the orthogonal polarization~SH!. The parametric
interaction of the four envelopesE1,2

6 (Z,T) through a qua-
dratic nonlinearity is ruled by the dimensionless equatio
@8,10#

i ~6u1,z
6 1v1

21u1,t
6 !1d1u1

61u1
71u2

6~u1
6!* 50, ~1!

i ~6u2,z
6 1v2

21u2,t
6 !1d2u2

61
~u1

6!2

2
50, ~2!

wherev j5Vg j /Vg1 with j 51,2 are the ratio of group veloci
ties at Bragg frequency,d15Dv/(GVg1) is the normalized
frequency detuning from Bragg condition (Dv50), d2

5(Dk12Vg2
21Dv)/G is the normalized nonlinear mismatc

corrected for the frequency detuning 2Dv, andz[GZ and
t[GVg1T are normalized temporal and propagation coor
nates, respectively,G being the Bragg coupling strength. Th
envelopesuj

6[Ej
6/AI j , j 51,2 are normalized with the ref

erence intensitiesI j5G2/(x jx1), where x j are the usual
nonlinear coefficients@10#. In the limit of large mismatches
ud2u@1, Eqs.~1! and~2! yield equivalent cubic or Kerr non
linearities @8,10#. In this limit PGS solutions of the brigh
type fill the forbidden dynamic gapd1

21V2,1 (V being the
normalized soliton velocity! where linear solutions are expo
nentially damped@10#. They exist for both positive and nega
tive mismatchesd2 , their peak intensity being simply pro
portional to the absolute mismatchud2u. Importantly, only
low-amplitude solitons such thatd1d2,0 turn out to be
stable, including the limitud1u;1 for which the propagation
is governed by a nonlinear Schro¨dinger equation@8#.

To date only the excitation of a slowly traveling PGS h
been addressed in singly resonant NPBS@8#. A different ap-
proach for the formation of a stationary PGS in doubly re
nant NPBS, based on the merging of two coherently exc
in-phase slow PGSs, has been described in Ref.@10#. Before
proceeding to study how a zero-velocity PGS can be ge
ated by means of pulsed illumination at fundamental on
singly resonant grating, it is convenient to gain insight
investigating the existence of PGS solutions. We seek tr
eling state solutions of Eqs.~1! of the form uj

65Aj
6xj

6(z)
with z5g(z2Vt), g51/A12V2 being the Lorentz factor,
and obtain the following system:
2467 ©1999 The American Physical Society
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6 i ẋ1
61x1

71D1
6x1

61x2
6~x1

6!* 50, ~3!

6 i ẋ2
61D2

6x2
61x6

~x1
6!2

2
50, ~4!

where we set A1
65@(16V)/(17V)#1/4, A2

65(A1
7)2,

D j5d j@g(17V/v j )#21, x65(16V)@g(17V/v2)(1
7V)#21, and the dot denotesd/dz. The usual ‘‘cascading’’
approach@13# neglects propagation effects in Eq.~4!, i.e., ẋ2

6

is dropped. We use here a more general perturbation
proach. Looking for exponentially decaying solutions atz
→6`, we can formally solve Eq.~4! as

x2
6~z!56 i

x6

2
e6 iD2

6zE
2`

z

@x1
6~z8!#2e7 iD2

6z8dz8. ~5!

After repeated integration by parts in Eq.~5!, we obtain

x2
6~z!52

x6

2D2
6 (

n50

1`
~7 i !n

~D2
6!n

dn~x1
6!2

dzn
. ~6!

Although the series~6! is convergent at least foruD2
6u

@1, in the following we are mainly interested in the fir
two terms. Retaining only the first term in Eq.~6!,
the following ansatz in terms of modulus an
phase x1

6(z)5C6Ash(z)exp@if6(z)# @here C1

5Aud2u(12V2)/(11V2), C252sC1 , s[sgn(d2) with
the constraintsh>0] yield the Hamiltonian system

q̇5J“qH, ~7!

where q[(h,f)T, f[f12f2 , the symplectic operato
J[diag@21,1#, and the Hamiltonian

H52h cosf12dh2h2/2, ~8!

where the effective detuning isd[(D1
11D1

2)/25gd1 . A
bright PGS corresponds to homoclinic orbits of the Ham
tonian ~8! emanating from the origin, which can be read
obtained explicitly~Ref. @10#!. These solutions exist, for
given detuningud1u,1, with any absolute velocity betwee
zero and a critical valueV[VKerr[A12d1

2, that is, they fill
the entire dynamical gapd1

21V2,1. Now consider the effec
of the additional term in the expansion~6!: in this case the
reduction in terms of modulus and phase variables implies
additional compatibility conditionx1/(D2

1)25x2/(D2
2)2,

which can be solved to give the following constrained d
crete values of the velocity

V50, V56A2v221. ~9!

Restricting here to the casev25Vg2 /Vg1.v0/2v050.5, the
latter condition means that only stationary solitons withV
50 are described by this approach. Provided that this c
straint ~9! is fulfilled, q again obeys Eq.~7! with the new
nonhomogeneous symplectic operatorJ5J(h)[diag@2(1
1h/d2)21,(11h/d2)21#. Exploiting the property of invari-
ance of the Hamiltonian fixed points with respect to t
change of the symplectic@14#, we conclude that at least sta
tionary solitons still exist, their profile being a reshaping
p-

-

n

-

n-

f

the first-order Kerr-like solutions. In this case, however,
were not able to obtain reasonably simple analytical exp
sions for the solitons. It is convenient to introduce the n
variable

z5 z̄1
1

d2
E

0

z̄
h~z8!dz8, ~10!

which permits us to reduce the new Hamiltonian system
the first-order one withJ[diag@21,1#. For a given first-
order solutionh(z) of Eq. ~8!, we obtain the second-orde
solution by numerically inverting Eq.~10!. We point out that
similar corrections for spatial parametric solitons in homog
neous~gratingless! media can be calculated explicitly@12#.
The latter case, however, is much simpler because first-o
solutions are real and one deals with zero-velocity solito
the moving ones being constructed via Galileian invarian
@lacking together with Lorentz invariance in Eqs.~1! and
~2!#.

To summarize, our second-order correction suggests
a PGS can be prolonged for relatively low mismatchesD2 ,
with zero ~or in general constrained to discrete values! ve-
locity. This can give a qualitative indication that the effect
reducing the mismatch results in lower-velocity solitons. It
necessary, however, to support this heuristic argument
means of a more quantitative analysis. To do this, we s
solutions of Eqs.~3! by means of the standard numeric
relaxation method. In particular, for a fixedd2 , we seek the
domain of existence in terms of velocityV of bright ~we
discard envelopes with a nonzero pedestal! PGS solutions of
Eqs. ~3! for different detuningd1 . The profiles agree wel
with those found from our second-order perturbation sche
@Eq. ~10!#. An example is shown in Fig. 1, where we com
pare the soliton profiles obtained at first order, at seco
order, and from the full numerical solution, respectively. T
results are summarized in Fig. 2~a!, where we report the
critical value of velocityV below which we find PGS solu
tions from Eqs.~3! and ~4!. The curves of critical velocity
are reconstructed from solutions withd1d2,0, sampled at
circles, squares, and crosses ford252,5,20, respectively. As

FIG. 1. Central part of the intensity profileuu1
1u21uu1

2u2 at fun-
damental frequency~FF! of a stationary (V50) PGS, for a rela-
tively low normalized mismatchd25D2

6525, andd15D1
650.8,

andv250.5. We compare the first-order Kerr-like solution~dashed
line!, the second-order correction~solid line with dots! from Eq.
~10!, and the numerical solution~solid line! of Eqs.~3! and ~4!.
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expected, for relatively larged2 @crosses in Fig. 2~a!# PGSs
can have relatively high velocities since the critical veloc
approaches the first-order valueVKerr in a large range of
detuningsd1 . Clearly, as the phase mismatch~i.e., ud2u) de-
creases, the critical PGS velocity decreases considerab
approachesVKerr only for ud1u.1, or in other words the so
lutions fill only a small portion of the dynamic gap. On th
basis, we expect that, for a given detuningd1 , PGSs with
progressively low velocity can be excited for decreasing m
matchesd2 . It is worth pointing out that the existence o
PGSs was investigated numerically for the doubly reson
case in Ref.@7#, where it was shown that they do not fill th
formally available existence region determined by the ov
lap of the two dynamical gaps at fundamental and SH,
spectively. Our results, however, cannot be extrapola
from those of Ref.@7#, because this existence region vanish
in the limit of negligible Bragg effect at SH.

Our aim here is to show that still PGSs can actually
launched in the NPBS. To this end, we integrated Eqs.~1!
and~2! using a split-step algorithm, with a Gaussian pulse
fundamentalu1

1(z,t)5APiexp@2(t2z)2/t0
2#, which represents

illumination of a finite NPBS (0,z,50) from a uniform
linear medium with the same average index (z,0). For suf-
ficiently large input powersPi slowly travelling PGSs are
formed @8#. In Fig. 2~b! we show the results of differen
numerical experiments, reporting the soliton velocityV mea-
sured in the early stage of the propagation (t,100) against
the powerPi for four different combinations of the param
eter d1 ,d2 . The results clearly indicate that the velocity
nearly independent of the incident power while it decrea
for low mismatches (d252), as expected. Note that the a
tual frequency of the formed PGS is slightly detuned w
respect tod1 in Eqs. ~1! and ~2! as a consequence of th
adiabatic reshaping of the fields characteristic of any sol
formation process from a nonsoliton input.

A remarkable phenomenon occurs for longer propaga
times, a typical example being displayed in Fig. 3 ford1
520.7 andd252. As shown, the fundamental input is part
reflected and partly transmitted upon generation of a
component of a PGS inside the NPBS (z.0). The two-color
PGS, however, reduces its propagation speed with timt,
tending to the stationary state (V50), a process for which
we wish to coin the term ‘‘lazy gap soliton.’’ The equivale
center of mass of the PGS, in turn, moves progressively
wardsz523. This result, rather surprising in terms of intu

FIG. 2. ~a! Critical velocityV below which soliton solutions are
numerically found from Eqs.~3! and ~4! versus detuningd1 , as
obtained for different mismatchesd2 . ~b! Velocity V of the excited
soliton versus the peak intensityPi of an input pulse witht055, for
different values of the normalized detuningd1520.7, 20.9, and
mismatchd252, 5.
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tive considerations on momentum conservation, can be
plained on physical grounds by looking at the initial stag
of the PGS formation, i.e., fort,400. A fraction of the
generated SH freely propagates away from the input bou
ary (z50); this characterizes the low-amplitude SH fiel
wherever generated by unbound fundamental compone
i.e., outside the PGS. The corresponding unbound fundam
tals, conversely, resonate with the Bragg grating and are
ject to reflection within the NPBS, eventually counterprop
gating towards the two-color gap soliton. Both the
contributions tend to alter the overall momentum associa
with the two-color PGS, leading to the effect pictured in F
3.

These considerations can be quantified in terms of m
mentum densities: though for a finite medium t
z-translational invariance is broken and the total moment

FIG. 3. Formation of a zero-velocity gap soliton in a fini
Bragg grating (0,z,50) from a Gaussian pulse of peak intens
Pi512 and widtht055 incident from a uniform medium (z,0):
contour of the ~a! fundamental; ~b! SH. Here d1520.7, d2

52, v250.5.

FIG. 4. Contour of the momentum densityM1 at fundamental
@Eq. ~10!# versus timet and spacez. The gray scale is inversely
proportional to the absolute density~black curves indicate chang
of sign!.
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is not strictly conserved, we can always define a quan
Mm5Mm(z,t) which characterizes the local density of m
mentum as

Mm5Im@um
1~]zum

1!* 1um
2~]zum

2!* # ~m51,2!, ~11!

in terms of which the total momentumM5*2`
1`M1

1M2dz is conserved for an infinite medium. We show
Fig. 4 the evolution of the density at fundamental@m51 in
Eq. ~11!#, for the case reported in Fig. 3. As shown, duri
the process of deceleration, the leading and trailing edge
the PGS exhibit a momentum density of different sign. T
results support the heuristic arguments given above, tha
while SH momentum is lost through linear radiation, the fu
damental unbound waves are Bragg reflected and contri
coherently~locally adding or subtracting! to the PGS mo-
hy
y

of
e
is,
-
te

mentum densities. This small linear wave correction supp
this physical picture only in the case of low-velocity PG
such as those investigated here.

In conclusion, a stationary PGS encompassing two~or
three, in general! frequency field components, can be excit
in singly resonant NPBS through the formation of ‘‘lazy
PGSs, i.e., slowly traveling PGS which decay to the stati
ary state for relatively small nonlinear phase mismatch. T
phenomenon is a demonstration of the possibility of writi
‘‘still’’ optical bits through a single beam/pulse input into th
structure.
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